Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Elife ; 102021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34488941

RESUMO

Sulfakinin (SK)/cholecystokinin (CCK)-type neuropeptides regulate feeding and digestion in protostomes (e.g. insects) and chordates. Here, we characterised SK/CCK-type signalling for the first time in a non-chordate deuterostome - the starfish Asterias rubens (phylum Echinodermata). In this species, two neuropeptides (ArSK/CCK1, ArSK/CCK2) derived from the precursor protein ArSK/CCKP act as ligands for an SK/CCK-type receptor (ArSK/CCKR) and these peptides/proteins are expressed in the nervous system, digestive system, tube feet, and body wall. Furthermore, ArSK/CCK1 and ArSK/CCK2 cause dose-dependent contraction of cardiac stomach, tube foot, and apical muscle preparations in vitro, and injection of these neuropeptides in vivo triggers cardiac stomach retraction and inhibition of the onset of feeding in A. rubens. Thus, an evolutionarily ancient role of SK/CCK-type neuropeptides as inhibitory regulators of feeding-related processes in the Bilateria has been conserved in the unusual and unique context of the extra-oral feeding behaviour and pentaradial body plan of an echinoderm.


Assuntos
Colecistocinina/metabolismo , Colecistocinina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Asterias/genética , Asterias/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Linhagem Celular , Equinodermos , Sistema Nervoso/metabolismo , Neuropeptídeos/classificação , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Filogenia , Estrelas-do-Mar
2.
Curr Protein Pept Sci ; 22(2): 158-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33200705

RESUMO

Neuropeptides are an important class of endogenous peptides in the nervous system that regulate physiological functions such as feeding, glucose homeostasis, pain, memory, reproduction, and many others. In order to understand the functional role of neuropeptides in diseases or disorders, studies investigating their dysregulation in terms of changes in abundance and localization must be carried out. As multiple neuropeptides are believed to play a functional role in each physiological process, techniques capable of global profiling multiple neuropeptides simultaneously are desired. Mass spectrometry is well-suited for this goal due to its ability to perform untargeted measurements without prior comprehensive knowledge of the analytes of interest. Mass spectrometry imaging (MSI) is particularly useful because it has the capability to image a large variety of peptides in a single experiment without labeling. Like all analytical techniques, careful sample preparation is critical to successful MSI analysis. The first half of this review focuses on recent developments in MSI sample preparation and instrumentation for analyzing neuropeptides and other biomolecules in which the sample preparation technique may be directly applicable for neuropeptide analysis. The benefit offered by incorporating these techniques is shown as improvement in a number of observable neuropeptides, enhanced signal to noise, increased spatial resolution, or a combination of these aspects. The second half of this review focuses on recent biological discoveries about neuropeptides resulting from these improvements in MSI analysis. The recent progress in neuropeptide detection and analysis methods, including the incorporation of various tissue washes, matrices, instruments, ionization sources, and computation approaches combined with the advancements in understanding neuropeptide function in a variety of model organisms, indicates the potential for the utilization of MSI analysis of neuropeptides in clinical settings.


Assuntos
Imagem Molecular/métodos , Neuropeptídeos/isolamento & purificação , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Humanos , Macaca mulatta , Camundongos , Imagem Molecular/instrumentação , Sistema Nervoso/diagnóstico por imagem , Sistema Nervoso/metabolismo , Neuropeptídeos/classificação , Neuropeptídeos/fisiologia , Proteômica/instrumentação , Ratos , Manejo de Espécimes/normas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
3.
J Am Soc Mass Spectrom ; 31(7): 1358-1371, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32266812

RESUMO

Identification of peptides in species lacking fully sequenced genomes is challenging due to the lack of prior knowledge. De novo sequencing is the method of choice, but its performance is less than satisfactory due to algorithmic bias and interference in complex MS/MS spectra. The task becomes even more challenging for endogenous peptides that do not involve an enzymatic digestion step, such as neuropeptides. However, many neuropeptides possess common sequence motifs that are conserved across members of the same family. Taking advantage of this feature to improve de novo sequencing of neuropeptides, we have developed a method named PRESnovo (prescreening precursors prior to de novo sequencing) to predict the motif from a MS/MS spectrum. A neuropeptide sequence is broken into a motif with conserved amino acid residues and the remaining partial sequence. By searching against a predefined motif database constructed from known homologous sequences, PRESnovo assigns the most probable motif to each precursor via a sophisticated scoring function. Performance analysis was conducted with 15 neuropeptide standards, and 11 neuropeptides were correctly identified with PRESnovo compared to 1 identification by PEAKS only. We applied PRESnovo to assign motifs to peptide sequences in conjunction with PEAKS for assigning the rest of the peptide sequence in order to discover neuropeptides in tissue samples of green crab, C. maenas, and Jonah crab, C. borealis. Collectively, a large number of neuropeptides were identified, including 13 putative neuropeptides identified in green crab brain, 77 in Jonah crab brain, and 47 in Jonah crab sinus glands for the first time. This PRESnovo strategy greatly simplifies de novo sequencing and enhances the accuracy and sensitivity of neuropeptide identification when common motifs are present.


Assuntos
Neuropeptídeos , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Motivos de Aminoácidos , Animais , Braquiúros , Bases de Dados de Proteínas , Neuropeptídeos/análise , Neuropeptídeos/química , Neuropeptídeos/classificação , Software
4.
Mol Phylogenet Evol ; 143: 106686, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740335

RESUMO

Recent state-of-the-art analyses in insect phylogeny have exclusively used very large datasets to elucidate higher-level phylogenies. We have tested an alternative and novel approach by evaluating the potential phylogenetic signals of identified and relatively short neuropeptide precursor sequences with highly conserved functional units. For that purpose, we examined available transcriptomes of 40 blattodean species for the translated amino acid sequences of 17 neuropeptide precursors. Recently proposed intra-ordinal relationships of Blattodea, based on the analysis of 2370 protein-coding nuclear single-copy genes (Evangelista et al., 2019), were corroborated with maximum support. The functionally different precursor units were analyzed separately for their phylogenetic information. Although the degree of information was different in the different sequence motifs, all precursor units contained phylogenetic informative data at the ordinal level, and their separate analysis did not reveal contradictory topologies. This study is the first comprehensive exploitation of complete neuropeptide precursor sequences of arthropods in such a context and demonstrates the applicability of these rather short but conserved sequences for an alternative, fast and simple analysis of phylogenetic relationships.


Assuntos
Baratas/metabolismo , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Teorema de Bayes , Baratas/classificação , Neuropeptídeos/classificação , Neuropeptídeos/genética , Fases de Leitura Aberta/genética , Filogenia , Precursores de Proteínas/classificação , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
5.
Sci Rep ; 9(1): 3515, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837549

RESUMO

Spoladea recurvalis is one of the most destructive insect pests of amaranth, a leafy vegetable in both Asia and Africa. The present study characterized the pheromone biosynthesis-activating neuropeptide (DH-PBAN) and pheromone/odorant binding proteins in S. recurvalis. The open reading frame of 600 base pairs encodes a 200-amino acid protein possessing five neuropeptide motifs (DH, PBAN, α-, ß-, and γ- subesophageal ganglion neuropeptides) and shares a characteristic conserved C-terminal pentapeptide fragment FXPRL. The full-length genome of Spre-DH-PBAN was 4,295 bp in length and comprised of six exons interspersed by five introns. Sequence homology and phylogenetic analysis of Spre-DH-PBAN have high similarity to its homologs in Crambidae of Lepidopteran order. We quantitatively measured the relative expression level (qRT_PCR) of Spre-DH-PBAN gene, the binding proteins such as odorant binding proteins (OBPs) and pheromone binding protein (PBPs) at different developmental stages. The results confirmed their role in recognition and chemoreception of sex pheromone components, and they were distinct, tissue- and sex-specific. This is the first report on the molecular analysis of PBAN gene and binding proteins, which can improve the understanding of molecular mechanisms of growth, development, and reproductive behavior of S. recurvalis, and may become effective targets for controlling this insect.


Assuntos
Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Feminino , Expressão Gênica , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Masculino , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Neuropeptídeos/classificação , Neuropeptídeos/genética , Filogenia , Ligação Proteica , Receptores Odorantes/classificação , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Alinhamento de Sequência , Atrativos Sexuais/metabolismo
6.
Insect Biochem Mol Biol ; 101: 94-107, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30165105

RESUMO

Hylobius abietis (Linnaeus), or large pine weevil (Coleoptera, Curculionidae), is a pest of European coniferous forests. In order to gain understanding of the functional physiology of this species, we have assembled a de novo transcriptome of H. abietis, from sequence data obtained by Next Generation Sequencing. In particular, we have identified genes encoding neuropeptides, peptide hormones and their putative G-protein coupled receptors (GPCRs) to gain insights into neuropeptide-modulated processes. The transcriptome was assembled de novo from pooled paired-end, sequence reads obtained from RNA from whole adults, gut and central nervous system tissue samples. Data analysis was performed on the transcripts obtained from the assembly including, annotation, gene ontology and functional assignment as well as transcriptome completeness assessment and KEGG pathway analysis. Pipelines were created using Bioinformatics tools and techniques for prediction and identification of neuropeptides and neuropeptide receptors. Peptidomic analysis was also carried out using a combination of MALDI-TOF as well as Q-Exactive Orbitrap mass spectrometry to confirm the identified neuropeptide. 41 putative neuropeptide families were identified in H. abietis, including Adipokinetic hormone (AKH), CAPA and DH31. Neuropeptide F, which has not been yet identified in the model beetle T. castaneum, was identified. Additionally, 24 putative neuropeptide and 9 leucine-rich repeat containing G protein coupled receptor-encoding transcripts were determined using both alignment as well as non-alignment methods. This information, submitted to the NCBI sequence read archive repository (SRA accession: SRP133355), can now be used to inform understanding of neuropeptide-modulated physiology and behaviour in H. abietis; and to develop specific neuropeptide-based tools for H. abietis control.


Assuntos
Proteínas de Insetos/genética , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Transcriptoma , Gorgulhos/genética , Sequência de Aminoácidos , Animais , Sistema Nervoso Central/metabolismo , Biologia Computacional , Feminino , Agricultura Florestal , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Neuropeptídeos/classificação , Neuropeptídeos/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Filogenia , Pinus/parasitologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/classificação , Receptores de Neuropeptídeos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Gorgulhos/classificação , Gorgulhos/metabolismo
7.
Open Biol ; 7(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28878039

RESUMO

Neuropeptides are a diverse class of intercellular signalling molecules that mediate neuronal regulation of many physiological and behavioural processes. Recent advances in genome/transcriptome sequencing are enabling identification of neuropeptide precursor proteins in species from a growing variety of animal taxa, providing new insights into the evolution of neuropeptide signalling. Here, detailed analysis of transcriptome sequence data from three brittle star species, Ophionotus victoriae, Amphiura filiformis and Ophiopsila aranea, has enabled the first comprehensive identification of neuropeptide precursors in the class Ophiuroidea of the phylum Echinodermata. Representatives of over 30 bilaterian neuropeptide precursor families were identified, some of which occur as paralogues. Furthermore, homologues of endothelin/CCHamide, eclosion hormone, neuropeptide-F/Y and nucleobinin/nesfatin were discovered here in a deuterostome/echinoderm for the first time. The majority of ophiuroid neuropeptide precursors contain a single copy of a neuropeptide, but several precursors comprise multiple copies of identical or non-identical, but structurally related, neuropeptides. Here, we performed an unprecedented investigation of the evolution of neuropeptide copy number over a period of approximately 270 Myr by analysing sequence data from over 50 ophiuroid species, with reference to a robust phylogeny. Our analysis indicates that the composition of neuropeptide 'cocktails' is functionally important, but with plasticity over long evolutionary time scales.


Assuntos
Equinodermos/genética , Neuropeptídeos/genética , Filogenia , Precursores de Proteínas/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Evolução Biológica , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Equinodermos/classificação , Equinodermos/metabolismo , Endotelinas/genética , Endotelinas/metabolismo , Dosagem de Genes , Expressão Gênica , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeos/classificação , Neuropeptídeos/metabolismo , Nucleobindinas , Precursores de Proteínas/classificação , Precursores de Proteínas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Mol Phylogenet Evol ; 116: 61-68, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28754241

RESUMO

The rich biological diversity of South America has motivated a series of studies associating evolution of endemic taxa with the dramatic geologic and climatic changes that occurred during the Cainozoic. The organism here studied is the killifish tribe Cynolebiini, a group of seasonal fishes uniquely inhabiting temporary pools formed during the rainy seasons. The Cynolebiini are found in open vegetation areas inserted in the main tropical and subtropical South American phytogeographical regions east of the Andes. Here, we present the first molecular phylogeny sampling all the eight genera of the Cynolebiini, using fragments of two mitochondrial and four nuclear genes for 35 species of Cynolebiini plus 19 species as outgroups. The dataset, 4448bp, was analysed under Bayesian and maximum likelihood approaches, providing a relatively well solved tree, which retrieves high support values for the Cynolebiini and most included clades. The resulting tree was used to estimate the time of divergence in included lineages using two cyprinodontiform fossils to calibrate the tree. We further investigated historical biogeography through the likelihood-based DEC model. Our estimates indicate that divergence between the clades comprising New World and Old World aplocheiloids occurred during the Eocene, about 50Mya, much more recent than the Gondwanan fragmentation scenario assumed in previous studies. This estimation is nearly synchronous to estimated splits involving other South American and African vertebrate clades, which have been explained by transoceanic dispersal through an ancient Atlantic island chain during the Palaeogene. We estimate that Cynolebiini split from its sister group Cynopoecilini in the Oligocene, about 25Mya and that Cynolebiini started to diversify giving origin to the present genera during the Miocene, about 20-14Mya. The Cynolebiini had an ancestral origin in the Atlantic Forest and probably were not present in the open vegetation formations of central and northeastern South America until the Middle Miocene, when expansion of dry open vegetation was favoured by cool temperatures and strike seasonality. Initial splitting between the genera Cynolebias and Simpsonichthys during the Miocene (about 14Mya) is attributed to the uplift of the Central Brazilian Plateau.


Assuntos
Peixes Listrados/classificação , Animais , Teorema de Bayes , Brasil , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Fósseis , Peixes Listrados/genética , Funções Verossimilhança , Proteínas dos Microfilamentos/classificação , Proteínas dos Microfilamentos/genética , Neuropeptídeos/classificação , Neuropeptídeos/genética , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Filogenia , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Rodopsina/classificação , Rodopsina/genética , Estações do Ano , Análise de Sequência de DNA , América do Sul
9.
Sci Rep ; 6: 39177, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958372

RESUMO

Oxytocin and vasopressin mediate a range of physiological functions that are important for osmoregulation, reproduction, social behaviour, memory and learning. The origin of this signalling system is thought to date back ~600 million years. Oxytocin/vasopressin-like peptides have been identified in several invertebrate species and they appear to be functionally related across the entire animal kingdom. There is little information available about the biology of this peptide G protein-coupled receptor signalling system in insects. Recently over 200 insect genome/transcriptome datasets were released allowing investigation of the molecular structure and phylogenetic distribution of the insect oxytocin/vasopressin orthologue - inotocin peptides and their receptors. The signalling system is present in early arthropods and representatives of some early-diverging lineages. However, Trichoptera, Lepidoptera, Siphonaptera, Mecoptera and Diptera, lack the presence of inotocin genes, which suggests the peptide-receptor system was probably lost in their common ancestor ~280 million-years-ago. In addition we detected several losses of the inotocin signalling system in Hemiptera (white flies, scale insects and aphids), and the complete absence in spiders (Chelicerata). This unique insight into evolutionarily patterns and sequence diversity of neuroendocrine hormones will provide opportunities to elucidate the physiology of the inotocin signalling system in one of the largest group of animals.


Assuntos
Proteínas de Insetos/metabolismo , Insetos/metabolismo , Neuropeptídeos/metabolismo , Ocitocina/metabolismo , Vasopressinas/metabolismo , Sequência de Aminoácidos , Animais , Bases de Dados Genéticas , Hemípteros/genética , Hemípteros/metabolismo , Holometábolos/genética , Holometábolos/metabolismo , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Insetos/genética , Neuropeptídeos/classificação , Neuropeptídeos/genética , Ocitocina/classificação , Ocitocina/genética , Filogenia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Aranhas/genética , Aranhas/metabolismo , Vasopressinas/classificação , Vasopressinas/genética
11.
Vestn Ross Akad Med Nauk ; 71(5): 385-91, 2016.
Artigo em Russo | MEDLINE | ID: mdl-29297993

RESUMO

Background: During the last years the addiction rate remains stable high. While the neurochemical drug effect remains unclear. Aims: To analyze the changes of the idiotypic (аАТ1) and anti-idiotypic (аАТ2) autoantibodies to the neuroproteins S100, MBP, GFAP, NGF on the different stages of opium addiction and to indicate prognosis criteria of their effect. Materials and Methods: 70 patients (only men, aged 22−38) with diagnosis opium addiction underwent examination. According to the results of testing, we detected the intoxication in 24 patients, withdrawal ­ in 24, and 22 patients were at remission stage of 21−28 days. The control group included only healthy people (n=18). The survey was focused on the rate detection of the idiotypic and anti-idiotypic IgG class antibodies in relation to the rate of neural proteins (S100, MBP, GFAP, NGF) in the serum with the IEA. Results: In patients with opium intoxication, we revealed statistical assurance in the rate of autoantibodies amount and their counterweights to the neural proteins rate between control and experimental groups. Only the rate of the аАТ2 protein significantly decreased relatively to the MBP. In patients with abstinence, the rate of аАТ1 to the MBP, GFAP (р≤0,05) increased. The rate of аАТ2 in relation to the GFAP and MBP also increased (р≤0,05), at the same time it decreased in relation to the S100 and NGF (р≤0,05). The autoantibodies amount at the remission stage corresponded to the amount at the intoxication stage. The comparative analysis of the patient groups with the different stages of opium addiction detected the identity criteria both in the intoxication and remission. We revealed statistical assurance in the rates of аАТ1 to MBP and аАТ2 to NGF in patients with intoxication and abstinence, and in the rates of аАТ1 to GFAP, MBP, and аАТ2 to GFAP (decreased in the remission) and to S100, MBP (increased in the remission) in patients with abstinence and at remission. Conclusion: Levels of idiotypic and anti-idiotypic antibodies to the neural proteins S100, MBP, GFAP, NGF (especially аАТ2 to MPB) could be used as diagnostic factor and for accessing different states of opium addiction.


Assuntos
Autoanticorpos/sangue , Neuropeptídeos/imunologia , Dependência de Ópio , Síndrome de Abstinência a Substâncias/imunologia , Adulto , Humanos , Masculino , Neuropeptídeos/classificação , Dependência de Ópio/diagnóstico , Dependência de Ópio/imunologia , Gravidade do Paciente , Escalas de Graduação Psiquiátrica , Estatística como Assunto , Síndrome de Abstinência a Substâncias/diagnóstico
13.
Open Biol ; 5(4): 150030, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25904544

RESUMO

Neuropeptides are ancient regulators of physiology and behaviour, but reconstruction of neuropeptide evolution is often difficult owing to lack of sequence conservation. Here, we report that the receptor for the neuropeptide NGFFFamide in the sea urchin Strongylocentrotus purpuratus (phylum Echinodermata) is an orthologue of vertebrate neuropeptide-S (NPS) receptors and crustacean cardioactive peptide (CCAP) receptors. Importantly, this has facilitated reconstruction of the evolution of two bilaterian neuropeptide signalling systems. Genes encoding the precursor of a vasopressin/oxytocin-type neuropeptide and its receptor duplicated in a common ancestor of the Bilateria. One copy of the precursor retained ancestral features, as seen in highly conserved vasopressin/oxytocin-neurophysin-type precursors. The other copy diverged, but this took different courses in protostomes and deuterostomes. In protostomes, the occurrence of a disulfide bridge in neuropeptide product(s) of the precursor was retained, as in CCAP, but with loss of the neurophysin domain. In deuterostomes, we see the opposite scenario-the neuropeptides lost the disulfide bridge, and neurophysin was retained (as in the NGFFFamide precursor) but was subsequently lost in vertebrate NPS precursors. Thus, the sea urchin NGFFFamide precursor and receptor are 'missing links' in the evolutionary history of neuropeptides that control ecdysis in arthropods (CCAP) and regulate anxiety in humans (NPS).


Assuntos
Neuropeptídeos/genética , Receptores de Neuropeptídeos/genética , Strongylocentrotus purpuratus/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Evolução Molecular , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Neuropeptídeos/análise , Neuropeptídeos/classificação , Neuropeptídeos/metabolismo , Filogenia , Precursores de Proteínas/classificação , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores de Neuropeptídeos/metabolismo , Strongylocentrotus purpuratus/química , Strongylocentrotus purpuratus/metabolismo , Vertebrados/metabolismo
14.
Proteins ; 83(7): 1238-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25917548

RESUMO

ECOD (Evolutionary Classification Of protein Domains) is a comprehensive and up-to-date protein structure classification database. The majority of new structures released from the PDB (Protein Data Bank) each week already have close homologs in the ECOD hierarchy and thus can be reliably partitioned into domains and classified by software without manual intervention. However, those proteins that lack confidently detectable homologs require careful analysis by experts. Although many bioinformatics resources rely on expert curation to some degree, specific examples of how this curation occurs and in what cases it is necessary are not always described. Here, we illustrate the manual classification strategy in ECOD by example, focusing on two major issues in protein classification: domain partitioning and the relationship between homology and similarity scores. Most examples show recently released and manually classified PDB structures. We discuss multi-domain proteins, discordance between sequence and structural similarities, difficulties with assessing homology with scores, and integral membrane proteins homologous to soluble proteins. By timely assimilation of newly available structures into its hierarchy, ECOD strives to provide a most accurate and updated view of the protein structure world as a result of combined computational and expert-driven analysis.


Assuntos
Algoritmos , Biologia Computacional/métodos , Bases de Dados de Proteínas , Terminologia como Assunto , Sequência de Aminoácidos , Animais , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/classificação , Evolução Molecular , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Neuropeptídeos/química , Neuropeptídeos/classificação , Neurotoxinas/química , Neurotoxinas/classificação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Software , Venenos de Aranha/química , Venenos de Aranha/classificação , Eletricidade Estática
15.
Gen Comp Endocrinol ; 213: 90-109, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25687740

RESUMO

The public deposition of large transcriptome shotgun assembly (TSA) datasets for the Araneae (true spiders) provides a resource for determining the structures of the native neuropeptides present in members of this chelicerate order. Here, the Araneae TSA data were mined for putative peptide-encoding transcripts using the recently deduced neuropeptide precursors from the Western black widow Latrodectus hesperus as query templates. Neuropeptide-encoding transcripts from five spiders, Latrodectus tredecimguttatus, Stegodyphus mimosarum, Stegodyphus lineatus, Stegodyphus tentoriicola and Acanthoscurria geniculata, were identified, including ones encoding members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, CAPA/periviscerokinin/pyrokinin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FMRFamide-like peptide (FLP), GSEFLamide, insulin-like peptide, orcokinin, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide (TRP) families. A total of 156 distinct peptides were predicted from the precursor proteins deduced from the S. mimosarum transcripts, with 65, 26, 21 and 12 peptides predicted from those deduced from the A. geniculata, L. tredecimguttatus, S. lineatus and S. tentoriicola sequences, respectively. Among the peptides identified were variant isoforms of FLP, orcokinin and TRP, peptides whose structures are similar to ones previously identified from L. hesperus. The prediction of these atypical peptides from multiple spiders suggests that they may be broadly conserved within the Araneae rather than being species-specific variants. Taken collectively, the data described here greatly expand the number of known Araneae neuropeptides, providing a foundation for future functional studies of peptidergic signaling in this important Chelicerate order.


Assuntos
Aracnídeos/metabolismo , Viúva Negra/metabolismo , Biologia Computacional/métodos , Neuropeptídeos/classificação , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Aracnídeos/classificação , Dados de Sequência Molecular , Neuropeptídeos/análise , Padrões de Referência
16.
Gen Comp Endocrinol ; 206: 96-110, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25058365

RESUMO

Despite being used as models in the field of ecotoxicology, including use in studies of endocrine disruption, little is known about the hormonal systems of amphipods, particularly their peptidergic signaling systems. Here, transcriptome shotgun assembly (TSA) sequences were used to predict the structures of the first neuropeptides from members of this crustacean order. Using a well-established workflow, BLAST searches of the extant amphipod TSA data were conducted for putative peptide-encoding transcripts. The pre/preprohormones deduced from the identified TSA sequences were then used to predict the mature structures of amphipod neuropeptides. In total, 43 putative peptide-encoding transcripts were identified from three amphipods, Echinogammarus veneris, Hyalella azteca and Melita plumulosa. Collectively, 139 distinct mature peptides (110 from E. veneris alone) were predicted from these TSA sequences. The identified peptides included members of the adipokinetic hormone/red pigment concentrating hormone, allatostatin A, allatostatin B, allatostatin C, bursicon α, bursicon ß, crustacean hyperglycemic hormone, diuretic hormone 31, FLRFamide, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone (PDH), proctolin, RYamide, SIFamide, sulfakinin and tachykinin-related peptide families. Of particular note were the identifications of orcokinins possessing SFDEIDR- rather than the typical NFDEIDR- amino-termini, e.g. SFDEINRSNFGFN, a carboxyl-terminally amidated orcokinin, i.e. SFDEINRSNFGFSamide, PDHs longer than the stereotypical 18 amino acids, e.g. NSELLNTLLGSKSLAALRAAamide, and a 13 rather than 12 amino acid long SIFamide, i.e. GPYRKPPFNGSIFamide. These data not only provide the first descriptions of native amphipod neuropeptides, but also represent a new resource for initiating investigations of peptidergic signaling in the Amphipoda.


Assuntos
Anfípodes/genética , Biologia Computacional , Perfilação da Expressão Gênica , Neuropeptídeos/classificação , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Anfípodes/metabolismo , Animais , Bases de Dados Factuais , Etiquetas de Sequências Expressas , Dados de Sequência Molecular , Neuropeptídeos/genética
17.
Biomed Res Int ; 2014: 286419, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24991545

RESUMO

Conotoxins are small disulfide-rich neurotoxic peptides, which can bind to ion channels with very high specificity and modulate their activities. Over the last few decades, conotoxins have been the drug candidates for treating chronic pain, epilepsy, spasticity, and cardiovascular diseases. According to their functions and targets, conotoxins are generally categorized into three types: potassium-channel type, sodium-channel type, and calcium-channel types. With the avalanche of peptide sequences generated in the postgenomic age, it is urgent and challenging to develop an automated method for rapidly and accurately identifying the types of conotoxins based on their sequence information alone. To address this challenge, a new predictor, called iCTX-Type, was developed by incorporating the dipeptide occurrence frequencies of a conotoxin sequence into a 400-D (dimensional) general pseudoamino acid composition, followed by the feature optimization procedure to reduce the sample representation from 400-D to 50-D vector. The overall success rate achieved by iCTX-Type via a rigorous cross-validation was over 91%, outperforming its counterpart (RBF network). Besides, iCTX-Type is so far the only predictor in this area with its web-server available, and hence is particularly useful for most experimental scientists to get their desired results without the need to follow the complicated mathematics involved.


Assuntos
Aminoácidos/química , Conotoxinas/metabolismo , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Algoritmos , Sequência de Aminoácidos , Canais de Cálcio/química , Canais de Cálcio/efeitos dos fármacos , Conotoxinas/química , Conotoxinas/classificação , Humanos , Neuropeptídeos/química , Neuropeptídeos/classificação , Peptídeos/química , Canais de Potássio/química , Canais de Potássio/efeitos dos fármacos , Canais de Sódio/química , Canais de Sódio/efeitos dos fármacos
18.
Gen Comp Endocrinol ; 204: 114-25, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24842716

RESUMO

Recent advances in high-throughput sequencing have facilitated the generation of large transcriptomic datasets for an ever-growing number of crustaceans, one being the carp louse Argulus siamensis. This and other members of the subclass Branchiura are obligate fish ectoparasites, and as such, are a major concern for commercial aquaculture. Using the extant transcriptome shotgun assembly (TSA) sequences for A. siamensis, 27 transcripts encoding putative neuropeptide precursors were identified, and their pre/preprohormones deduced and characterized using a well-established bioinformatics workflow. The structures of 105 distinct peptides were predicted from the deduced proteins, including isoforms of adipokinetic hormone (AKH), allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon ß, crustacean cardioactive peptide (CCAP), diuretic hormone 31, diuretic hormone 44, eclosion hormone, myosuppressin, neuroparsin, neuropeptide Y, orcokinin, pigment dispersing hormone, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide. While several of the predicted peptides are known from other crustacean and/or insect species, e.g. RYLPT, a broadly conserved arthropod proctolin isoform, and PFCNAFTGCamide (disulfide bridging between the two cysteines), the stereotypical crustacean CCAP, the vast majority of them are described here for the first time, e.g. pQVNFSTKWamide, a new AKH/red pigment concentrating hormone superfamily member, pQEGLDHMFMRFamide, a novel myosuppressin, and SYKSKPPFNGSIFamide, a new member of the SIFamide family. As the peptides presented here are the only ones thus far described from A. siamensis, or for that matter, any branchiuran, they represent a new resource to begin investigations of peptidergic control of physiology and behavior in this and other related aquacultural pests.


Assuntos
Arguloida/genética , Biologia Computacional , Neuropeptídeos/classificação , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Arguloida/crescimento & desenvolvimento , Arguloida/metabolismo , Bases de Dados Factuais , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Neuropeptídeos/genética
19.
Nucleic Acids Res ; 42(Web Server issue): W182-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24792159

RESUMO

Neuropeptides (NPs) are short secreted peptides produced in neurons. NPs act by activating signaling cascades governing broad functions such as metabolism, sensation and behavior throughout the animal kingdom. NPs are the products of multistep processing of longer proteins, the NP precursors (NPPs). We present NeuroPID (Neuropeptide Precursor Identifier), an online machine-learning tool that identifies metazoan NPPs. NeuroPID was trained on 1418 NPPs annotated as such by UniProtKB. A large number of sequence-based features were extracted for each sequence with the goal of capturing the biophysical and informational-statistical properties that distinguish NPPs from other proteins. Training several machine-learning models, including support vector machines and ensemble decision trees, led to high accuracy (89-94%) and precision (90-93%) in cross-validation tests. For inputs of thousands of unseen sequences, the tool provides a ranked list of high quality predictions based on the results of four machine-learning classifiers. The output reveals many uncharacterized NPPs and secreted cell modulators that are rich in potential cleavage sites. NeuroPID is a discovery and a prediction tool that can be used to identify NPPs from unannotated transcriptomes and mass spectrometry experiments. NeuroPID predicted sequences are attractive targets for investigating behavior, physiology and cell modulation. The NeuroPID web tool is available at http:// neuropid.cs.huji.ac.il.


Assuntos
Neuropeptídeos/classificação , Precursores de Proteínas/classificação , Software , Animais , Inteligência Artificial , Genômica , Humanos , Internet , Neuropeptídeos/química , Neuropeptídeos/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética , Análise de Sequência de Proteína
20.
Gen Comp Endocrinol ; 201: 74-86, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24530630

RESUMO

The Remipedia is a small, recently described crustacean class that inhabits submerged marine/anchialine cave systems. Phylogenetic and morphological investigations support a sister group relationship between these animals and the hexapods. The recent deposition of numerous (>100,000) transcriptome shotgun assembly sequences for Speleonectes cf. tulumensis provides a unique resource to identify proteins of interest from a member of the Remipedia. Here, this dataset was mined for sequences encoding putative neuropeptide pre/preprohormones, with the mature peptides predicted from the deduced precursors using an established workflow. The structures of 40 mature peptides were obtained via this strategy, including members of 11 well-known arthropod peptide families (adipokinetic hormone/corazonin-like peptide [ACP], allatostatin A, allatostatin C, diuretic hormone 31, eclosion hormone, ion transport peptide/crustacean hyperglycemic hormone, neuropeptide F, proctolin, SIFamide, sulfakinin and tachykinin-related peptide); these are the only peptides thus far described from any member of the Remipedia. Comparison of the Speleonectes isoforms with those from other crustaceans and hexapods revealed the peptidome of this species to have characteristics of both subphyla (e.g. it possesses the stereotypical decapod crustacean SIFamide and tachykinin-related peptide isoforms, while simultaneously being the only crustacean with an insect AKC). Moreover, BLAST searches in which the deduced Speleonectes precursors were compared to the pancrustacean protein database most frequently returned insect homologs as the closest matches. The peptidomic analyses presented here are consistent with the hypothesized phylogenetic position of the Remipedia within the Pancrustacea, and serve as a foundation from which to launch future investigations of peptidergic signaling in remipedes.


Assuntos
Biologia Computacional , Crustáceos/metabolismo , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Etiquetas de Sequências Expressas , Dados de Sequência Molecular , Neuropeptídeos/classificação , Neuropeptídeos/genética , Filogenia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...